
Chapter 6

Diffusion-based generative models

As in Chapter 5, the goal here is to construct a generative method to “sample approximately” from an
unknown distribution p∗(x)d x from which we have observed an i.i.d. n-sample X1, . . . , Xn .

We will present a family of methods often referred to as “diffusion models". Their popularity have
blown up over the Summer of 2022, with the release of Stable diffusions for images, and GPT 3 for
natural language processing. Although pioneering works can be found in physics before that, the rise
of such methods can be dated back to [SSDK+20], which catch phrase is:

Creating noise from data is easy; creating data from noise is generative modeling.

The global idea is to add noise to data incrementally while learning to denoise at each step, and then
reverse the whole process (see Figure 6.1).

 

  

Forward SDE (data → noise) 

Reverse SDE (noise → data) 

score function

Figure 6.1: Big picture of generative modeling (taken from [SSDK+20]).

6.1 Stochastic calculus survival kit

There are two main ways to formalize diffusion models. One uses discrete time increments [HJA20]
and requires knowledge on Markov chains only, but it does not yield a clear mathematical framework.
We opt for the other way, which uses continuous time increments [SSDK+20] and requires tools from
stochastic calculus. It will yield a quite unified functional framework to hold on to.
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This section gives a minimal overview of stochastic calculus. To make the presentation lighter, we
purposely leave all the convergence and measurability issues under the carpet. If you feel scammed,
you shall find all the necessary mathematical details in Jean-François Le-Gall’s book [LG16].

6.1.1 Brownian motion

What is it?

Given a measurable space (E ,E ) and an arbitrary index set T , a random process (indexed by T) with
values in E is a collection (X t )t∈T of random variables with values in E . Said otherwise, (X t )t∈T can be
seen as a random function X · : T → E . Among such processes, we will focus on those with Gaussian
marginals.

Definition 6.1 (Gaussian process). A real-valued random process is called a (centered) Gaussian pro-
cess if any finite linear combination of the variables (X t )t∈T is a (centered) Gaussian.

The distribution of a centered Gaussian process is fully determined by its covariance kernel

K (s, t ) := E [Xs X t ] , for all s, t ∈ T.

The main building block of stochastic calculus is the so-called Brownian motion, which we first
present in dimension d = 1.

Definition 6.2 (Brownian motion). There exists a process (Bt )t≥0 called Brownian motion, which is a
centered Gaussian process over T = R+ with continuous sample paths t 7→ Bt and such that any of the
following equivalent properties holds.

• B0 = 0 a.s., and for all 0 ≤ s < t , the random variable Bt −Bs is independent of the σ-field Fs :=
σ (Br ,r ≤ s) and distributed according to N (0, t − s).

• B0 = 0 a.s., and for all 0 ≤ t0 < t1 < . . . < tp , the random variables (Bt j −Bt j−1 ) j are independent
and distributed according to N (0, t j − t j−1).

• For all s, t ≥ 0, K (s, t ) = s ∧ t .

Proof. See [LG16, Proposition 2.3] for the equivalences, and [LG16, Exercise 1.18] for Lévy’s construc-
tion. A more geometric construction on T = [0,1] uses Donsker’s invariance principle. It is based on a
iid sequence (Xi )i∈N of centered real random variables with unit variance. Define the piecewise-linear
continuous process

Zn(u) :=
⌈u⌉∑
i=1

Uiψ(u − i ),u ∈ [0,1],

where ψ(v) := min{1,max{0, v}}. Then (Bt )t∈[0,1] can be constructed as the limit in distribution of the

sequence of processes
(

1p
n

Zn(nt )
)

t∈[0,1]
.

See Figure 6.1.1 for an illustration of sample paths of (Bt )t . As Definition 6.2 suggests, we will
be dealing with measurability of random variables with respect to σ-fields indexed by (time) t ∈ T .
Hence, some vocabulary is in order.

Definition 6.3 (Filtration, adapted process).

• A filtration over T ⊂R is an increasing family (Ft )t∈T ofσ-fields, i.e. Fs ⊂Ft for all s ≤ t with s, t ∈ T .

• A stochastic process (X t )t∈T is said to be adapted to a filtration (Ft )t∈T if for all s ∈ T , X t is Ft -
measurable.
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Figure 6.2: Ten trajectories of a Brownian motion.

Regularity properties of the Brownian motion

Among the many nice properties that the Brownian motion exhibits, let us point out three of the most
important ones.

• (Martingale property) The first characterization of Definition 6.2 yields that the Brownian motion is
a martingale adapted to the filtration

(
Fs :=σ(Xr ,r ≤ s)

)
s≥0, since for all 0 ≤ s ≤ t ,

E [Bt |Fs ] = E [Bs |Fs ]+E [Bt −Bs |Fs ]

= Bs +E [Bt −Bs ]

= Bs .

• (Hölder smoothness) By definition, a Brownian motion has sample paths t 7→ Bt (ω) that are con-
tinuous for almost all ω. In fact, they can be shown to be more regular. They are locally Hölder
continuous with exponent 1/2−δ for all 0 < δ < 1/2, in the sense that |Bt −Bs | ≲ |t − s|1/2−δ a.s.
(see [LG16, Corollary 2.11]). This essentially comes from the fact that for all t ≥ s ≥ 0,

E

[(
Bt −Bsp

t − s

)2]
= E (Bt −Bs )2

t − s

= K (t , t )+K (s, s)−2K (s, t )

t − s
= 1.

One can also show that this Hölder exponent is optimal, in the sense that for all δ > 0, (Bt )t is a.s.
not Hölder continuous with exponent 1/2+δ, even locally.

• (Quadratic variation) Samples paths of (Bt )t being not more than 1/2-Hölder everywhere, they do
not have finite length. In fact, for all sequence of subdivisions 0 = t n

0 < t n
1 < . . . < t n

pn
= t of [0, t ]

whose maximal spacing max1≤ j≤pn |t j − t j−1| tends to zero as n →∞, we have

pn∑
j=1

|Bt n
j
−Bt n

j−1
| a.s.−−−−→

n→∞ ∞.



CHAPTER 6. DIFFUSION-BASED GENERATIVE MODELS 76

We say that (Bt )t has infinite first variation. However, we can show that its quadratic variation is
always well defined and deterministic. More precisely, we have

pn∑
j=1

(Bt n
j
−Bt n

j−1
)2 L2

−−−−→
n→∞ t .

6.1.2 Itô stochastic integral

Since (Bt )t exhibits infinite first variation, it is not possible to define the integral
∫ t

s φ(u)dBu of a
(smooth enough) function φ : R→ R as a special case of the usual Stieltjes integral. For (Ft )t of fi-
nite first variation [LG16, Section 4.1.1], this integral is characterized by the fact that it satisfies the
fundamental theorem of calculus asserting that for allΦ ∈C 1(R,R),

Φ(Ft ) =Φ(Fs )+
∫ t

s
Φ′(Fu) dFu︸︷︷︸

F ′
u du

.

Equivalently, it is not straightforward to define a notion of differential dBt , which would satisfy a sim-
ilar chain rule as dΦ(Ft ) =Φ′(Ft )dFt .

However, we can give this integral a meaning through the fact that its quadratic variation is finite.
This will yield a tweaked fundamental theorem of calculus called Itô’s formula (see Theorem 6.14).
The standard construction of this integral goes through the following elementary processes, which
play the role of simple functions in Lebesgue’s integral.

Definition 6.4 (Elementary stochastic process). A stochastic process (X t )t∈[a,b) is said to be elementary
if there exist deterministic values a = t0 < t1 < . . . < tp = b and random variables (X j )0≤ j≤p−1 such that
for all t ∈ [a,b),

X t =
p∑

j=1
X j−11[t j−1,t j )(t ).

Said otherwise, an elementary process is a piecewise constant random process. With the above
convention of notation, we have X t j = X j for all j < p. The integral against the Brownian motion is
naturally defined as the weighted increments on each of its constant pieces.

Definition 6.5 (Itô integral of an elementary process). If (X t )t is an elementary process as in Defini-
tion 6.4, define ∫ b

a
X t dBt :=

p∑
j=1

X t j−1 (Bt j −Bt j−1 ).

As a first elementary remark, let us point out that
∫ b

a dBt = Bb −Ba , which motivates notation dBt .
In fact, the above proto-integral fulfills a few desirable properties that an actual integral should satisfy.

Proposition 6.6. Let (X t )t and (Yt )t be elementary processes indexed by [a,b], adapted to the natural
filtration (σ(Br ,r ≤ s))s of the Brownian motion.

• (Linearity) For all λ,µ ∈R, ∫ b

a
λX t +µYt dBt =λ

∫ b

a
X t dBt +µ

∫ b

a
Yt dBt .
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• (Centering) If E[|X t |] <∞ for all t ∈ [a,b], then E
[∣∣∣∫ b

a X t dBt

∣∣∣]<∞, and

E

[∫ b

a
X t dBt

]
= 0.

• (Square integrability and isometry) If E[X 2
t ] <∞ for all t ∈ [a,b], then E

[(∫ b
a X t dBt

)2
]
<∞. If fur-

thermore E[Y 2
t ] <∞ for all t ∈ [a,b], then

E

[(∫ b

a
X t dBt

)(∫ b

a
Yt dBt

)]=
∫ b

a
E [X t Yt ]dt .

Proof. Left as an exercise. (come on, do it for real!)

The last property asserts that the map

L2([0,T ]×Ω) ⊃M 2 −→ L2(Ω)

(X t )0≤t≤T 7−→
∫ T

0
X t dBt

is an isometry. At this point in the construction, this map is only defined on the subspace of L2([0,T ]×
Ω) generated by the adapted elementary processes. Similarly as for Lebesgue’s integral, the idea is to
extend its definition to the larger subspace M 2 ⊂ L2([0,T ]×Ω) of adapted processes approximable by
elementary processes, by continuity 1.

Definition 6.7 (Itô integral against the Brownian motion). For all stochastic processes in M 2, define∫ b

a
X t dBt := lim

n→∞

pn∑
j=1

X t n
j−1

(Bt n
j
−Bt n

j−1
),

where the limit is in L2(Ω), and (t n
i ) is any sequence of subdivisions of [a,b] with max j |t n

j −t n
j−1| −−−−→n→∞ 0.

Proposition 6.8. All the properties of Proposition 6.6 are still valid when (X t )t is a “nice enough"
stochastic process.

Example 6.9 (
∫ T

0 Bt dBt ). Let us consider the stochastic integral
∫ T

0 Bt dBt . This quantity makes sense,
because the stochastic process X t = Bt is in M 2: it is adapted with continuous trajectories and finite
integrated second moment ∫ T

0
E[B 2

t ]dt =
∫ T

0
tdt = T 2/2.

Let (t n
i ) be a sequence of subdivisions of [0,T ] with maxi |t n

i+1 − t n
j | −−−−→n→∞ 0. Write

B (n)
t :=

pn∑
j=1

Bt n
j−1
1[t j−1,t j )(t )

1Lots of measurability issues purposely left under the carpet here. See [LG16, Chapter 4].



CHAPTER 6. DIFFUSION-BASED GENERATIVE MODELS 78

for the associated elementary process approximating (Bt )t . By definition, we have∫ T

0
Bt dBt = lim

n→∞

∫ T

0
B (n)

t dBt

= lim
n→∞

pn∑
j=1

Bt n
j−1

(Bt n
j
−Bt n

j−1
)

= lim
n→∞

{
1

2

pn∑
j=1

(B 2
t n

j
−B 2

t n
j−1

)− 1

2

pn∑
j=1

(Bt n
j
−Bt n

j−1
)2

}

= 1

2
(B 2

T −B 2
0 )− lim

n→∞
1

2

pn∑
j=1

(Bt n
j
−Bt n

j−1
)2

= 1

2
(B 2

T −T ),

where the last line uses the formula for the quadratic variation of the Brownian motion. At the end of
the day, we recognize a similar structure as for

∫ T
0 Ft dFt = 1

2 F 2
T when F is C 1 and F0 = 0, but with an

extra additive compensator to center the process.

Example 6.10 (Distribution of
∫ T

0 ft dBt ). Let f : [0,T ] →R be a continuous deterministic function, and

consider
∫ T

0 ft dBt . By Definition 6.7, it is the limit in L2 of Gaussians, so it Gaussian. Furthermore, from
Proposition 6.8, it has mean zero and variance

Var

(∫ T

0
ft dBt

)
=

∫ T

0
f 2

t dt .

Hence,
∫ T

0 ft dBt ∼N
(
0,

∫ T
0 f 2

t dt
)
.

6.1.3 A notion of stochastic differential: Itô stochastic calculus

The above construction of Itô integral extends to more general process than the Brownian motion. We
will limit ourselves to the following class of processes.

Definition 6.11 (Itô process, stochastic differential). An Itô process (or stochastic integral is a stochas-
tic process (X t )t adapted to (Ft )t which can be written as

X t = X0 +
∫ t

0
at dt +

∫ t

0
bt dBt ,

where at ,bt are continuous stochastic processes in L1 and L2 respectively. If so, the stochastic differen-
tial of (X t )t is defined as

dX t := at dt +bt dBt .

If so, at is called the drift and bt the diffusion term (or volatility) of (X t )t .

Here, at and bt may depend (implicitly or explicitly) of the process (Xs )s≤t itself. Let us empha-
size that the stochastic differential is only a shorthand notation for the equality between stochastic
integrals above. However, as we shall expect, one easily checks that if Ft is a C 1 process, we recover
the classical notion of differential through dFt = F ′

t dt . This case corresponds to a zero diffusion term
bt = 0.

Example 6.12. From Example 6.9, B 2
t = t +∫ t

0 2Bs dBs . Therefore, we have dB 2
t = dt +2Bt dBt .
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In the above example, notice the fundamental difference with the regular differential of a C 1 func-
tion which yields d(Ft )2 = 2Ft dFt . The extra term comes from the fact that the Brownian motion has
finite quadratic variation. This property naturally transfers to Itô processes.

Proposition 6.13 (Quadratic variation of an Itô process). If (X t )t is an Itô process as in Definition 6.11,
then it has finite quadratic variation

〈X 〉t := lim
n→∞

pn∑
j=1

(X t n
j
−X t n

j−1
)2.

Because it is a continuous non-increasing process, (〈X 〉t )t has finite first variation, and d〈X 〉t = b2
t dt .

The quadratic variation of an Itô process appears explicitly in the aforementioned tweaked chain
rule called Itô formula.

Theorem 6.14 (Itô formula). Let (X t )0≤t≤T be an Itô process and Φ ∈ C 2,1(R×R+,R) be a function of
space-time variable (x, t ). Then

(
Φ(X t , t )

)
0≤t≤T is an Itô process with stochastic differential

dΦ(X t , t ) = ∂tΦ(X t , t )dt +∂xΦ(X t , t )dX t + 1

2
∂2

x,xΦ(X t , t )d〈X 〉t .

Note that if dX t = at dt +bt dBt , Itô formula rewrites as

dX t =
(
∂tΦ(X t , t )+at∂xΦ(X t , t )

)
dt + (

∂xΦ(X t , t )+bt∂
2
x,xΦ(X t , t )

)
bt dBt .

Sketch of proof. Let us consider the simpler case whereΦ(x, t ) =Φ(x) is homogeneous in time. In this
case, the integral form of Itô formula writes as

Φ(X t ) =Φ(X0)+
∫ t

0
Φ′(Xs )dXs + 1

2

∫ t

0
Φ′′(Xs )d〈X 〉s .

To see this, come back to Definition 6.7 of the Itô integral. Given an arbitrarily fine partition of [0, t ],
consider the telescopic sum

Φ(X t ) =Φ(X0)+
p∑

j=1
Φ(X t j )−Φ(X t j−1 )

=Φ(X0)+
p∑

j=1
Φ′(X t j−1 )(X t j −X t j−1 )+ 1

2

p∑
j=1

Φ′′(X t∗j−1
)(X t j −X t j−1 )2,

for some values t∗j−1 ∈ [t j−1, t j ] given by the Taylor-Lagrange formula. Dealing with each sum sepa-

rately, we get that
p∑

j=1
Φ′(X t j−1 )(X t j −X t j−1 ) −−−−→

p→∞

∫ t

0
Φ′(Xs )dXs

by the definition of the stochastic integral, and by uniform continuity of (X t )t ,

p∑
j=1

Φ′′(X t∗j−1
)(X t j −X t j−1 ) ≃

p∑
j=1

Φ′′(X t j−1 )(X t j −X t j−1 )2

−−−−→
p→∞

∫ t

0
Φ′′(Xs )d〈X 〉s ,

which concludes the proof.
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Remark 6.15 (Sanity check for C 1 processes). The Itô formula does not contradict the classical funda-
mental theorem of calculus2. Indeed, replacing X t by a C 1 process Ft , the second term is zero because
Ft has finite first variation V (F )t , and hence quadratic variation equal to zero. Indeed, from Hölder
inequality,

〈F 〉t = lim
p→∞

p∑
j=1

(Ft j −Ft j−1 )2

≤ lim
n→∞ max

1≤ j ≤p
|Ft j −Ft j−1 )|

pn∑
j=1

|Ft j −Ft j−1 )|︸ ︷︷ ︸
→V (F )t

≤ lim
n→∞ max

1≤ j ≤p
∥F ′∥∞|t j − t j−1|V (F )t

= 0.

Exercise 6.16. Revisit the proof of Example 6.9 using Itô formula.

6.1.4 Multi-dimensional stochastic calculus

All the above can be generalized to random processes with values in Rd . Everything is then defined
component-wise. That is, the Brownian motion (Bt )t≥0 is a Gaussian process with independent co-
ordinates being real-valued Brownian motions. The integral and stochastic differential are defined
accordingly. Finally, Itô’s formula writes as follows.

Theorem 6.17 (Multidimensional Itô formula). Let (X t )0≤t≤T be an Itô process inRd andΦ ∈C 2,1(Rd ×
R+,RD ) be a function of space-time variable (x, t ). Then

(
Φ(X t , t )

)
0≤t≤T is an Itô process in R with

stochastic differential

dΦ(X t , t ) = ∂tΦ(X t , t )dt +
d∑

k=1
∂xkΦ(X t , t )dX t + 1

2

d∑
k,ℓ=1

∂2
xk ,xℓΦ(X t , t )d〈X (k), X (ℓ)〉t ,

where X t = (X (1)
t , . . . , X (d)

t ), and 〈U ,V 〉t := limn→∞
∑pn

j=1(Ut n
j
−Ut n

j−1
)(Vt n

j
−Vt n

j−1
).

Exercise 6.18 (Product rule and value of
∫ T

0 ft dBt ). Use the Theorem 6.17 to prove that if (X t )t and
(Yt )t are Itô processes that are either 1) driven by independent Brownians and one is centered, or 2) one
has bounded variation, then

X t Yt = X0Y0 +
∫ t

0
Xs dYs +

∫ t

0
Ys dXs .

If f : [0,T ] →R is a C 1 processs, show that
∫ T

0 ft dBt = fT BT −∫ T
0 Bt d ft . Compare with Example 6.10.

6.2 Diffusion from a distribution and back

6.2.1 Ornstein–Uhlenbeck process

Now equipped with a notion of stochastic differential, one may wonder how to solve stochastic differ-
ential equations. Historically, one of the most central one in diffusion-based generative models is the
following.

2Fortunately, these lecture notes are not completely nonsense.
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Definition 6.19 (Ornstein-Uhlenbeck process). An Ornstein-Uhlenbeck process with parametersλ,σ>
0 starting at x ∈ Rd driven by a d-dimensional Brownian motion is a stochastic process on T = R+
satisfying 3

{
dX t =−λX t dt +p

2σdBt ,

X0 = x.

To try and solve such a stochastic differential equation (SDE), note that its integral form

X t = x −
∫ t

0
λX t dt +p

2σBt ,

yields that the mean m(t ) := E[X t ] of X t satisfies m′(t ) =−λm(t ) with m(0) = x, so that m(t ) = e−λt x.
Hence, let us introduce the renormalized process Yt := eλt X t . By applying Itô formula (Theorem 6.14)
toΦ(x, t ) := eλt x, we get

dYt = ∂tΦ(X t , t )︸ ︷︷ ︸
=λYt

dt +∂xΦ(X t , t )︸ ︷︷ ︸
=eλt

dX t + 1

2
∂2

x,xΦ(X t , t )︸ ︷︷ ︸
=0

(
p

2σ)2dt

= (λYt −λeλt X t )dt +eλt
p

2σdBt

=p
2σeλt dBt .

This means that Yt = Y0 +
∫ t

0

p
2σeλs dBs , or equivalently,

X t = xe−λt +
∫ t

0

p
2σeλ(s−t )dBs .

If x is deterministic, we obtain that (see Example 6.10)

X t ∼N
(
xe−λt ,

σ2

λ
(1−e−2λt )

)
.

As a result, X t
t→∞−−−→ N (0,σ2/λ) in distribution. See Figure 6.3 for an illustration. All this derivation

easily generalizes to parameters λ=λt and σ=σt depending on time.

Proposition 6.20 (Generalized Ornstein-Uhlenbeck process). The generalized Ornstein-Uhlenbeck
equation {

dX t =−λt X t dt +p
2σt dBt ,

X0 = x.

admits for unique solution

X t = xe−µt +
∫ t

0

p
2σt eµs−µt dBs ,

where µt := ∫ t
0 λs ds.

Proof. Left as an exercise.

3The choice of normalization
p

2σ instead of σ will become clear below in an equivalent analytical formalism, see Proposi-
tion 6.23.
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Figure 6.3: Ten trajectories of an homogeneous Ornstein-Uhlenbeck (Definition 6.19) starting from
X0 = 2 with λ = 5 and σ = 1/2, all stopped at time T = 5 (left). Histogram of XT on N = 5000 draws
compared to the limiting normal (right).

If now X0 has a non-deterministic distribution, we obtain the distribution of X t straightforwardly.

Proposition 6.21. If X0 ∼ p0(x)dx and (X t )t≥0 is given by the generalized Ornstein-Ulhenbeck process
of Proposition 6.20, then X t ∼ pt (x)dx has the distribution of

X0e−µt +2

(∫ t

0
σ2

t e2(µt−µs )ds

)
Z ,

where Z ∼N (0,1) is independent from X0.

See Figure 6.4 for an illustration of Proposition 6.21. From there, the core idea of diffusion genera-
tive models can be summarized as follows. Starting from an unknown sample distribution X0 ∼ pdata

and gradually adding noise to X0 (i.e. letting an Ornstein-Uhlenbeck process run from starting point
X0), we converge towards a known Gaussian distribution N (0,σ2/λ) at t =∞. If we know how to re-
verse this dynamics, then starting from a (easy to generate) fresh random variable with distribution
N (0,σ2/λ), we will obtain a fresh sample with distribution (close to) pdata.

Remark 6.22 (Applicability of the above theory).

• All the above generalizes to higher dimensions d > 1 (see Section 6.1.4), making this idea actually
applicable for high-dimensional data

• In practice, simulating an Itô process with known and computable drift at and diffusion term bt

can be done approximately by time discretization. The simplest algorithm for this is called the Euler
scheme, used to generate the figures of this chapter. It uses the very Definition 6.7 of an Itô integral.

6.2.2 Fokker-Planck equation

Diffusion processes and PDEs

To formalize how to reverse time in stochastic differential equations properly, one has to turn towards
the theory of Partial Differential Equations (PDEs) [And82]. Given a smooth enough function f :Rd →
R and vector field V :Rd →Rd , we denote by

• ∇ f := (∂x1 f , . . . ,∂xd f ) the gradient of f ,
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Figure 6.4: Exemplifying Proposition 6.21 with histograms of Ornstein-Uhlenbeck processes stopped
at T = 1 starting from X0 with mixture distribution pdata = 0.8N (−1,1/2)+0.2N (−2,1/2). Diffusion
parameters are as in Figure 6.3. Histograms are computed over N = 50000 trajectories.
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• ∇·V :=∑d
k=1∂xk Vk the divergence of V ,

• ∆ f :=∇·∇ f =∑d
k=1∂

2
xk ,xk

f the Laplacian of f .

With these operators, integrations by parts write as∫
Rd

f (x)∇·V (x)dx =−
∫
Rd

〈∇ f (x),V (x)〉dx,

so that ∫
Rd

f (x)∆g (x)dx =−
∫
Rd

〈∇ f (x),∇g (x)〉dx =
∫
Rd
∆ f (x)g (x)dx,

Proposition 6.23 (Fokker-Planck characterization of the dynamic). Let (X t )t be the solution of the SDE

dX t = at (X t )dt +p
2σt (X t )dBt ,

with initial condition X0 ∼ p0(x)dx having a smooth density with respect to the Lebesgue measure in
Rd . Then for all t ≥ 0, X t has a density pt with respect to the Lebesgue measure, and this density satisfies
the Fokker-Planck equation

∂t pt =−∇· (at pt
)+∆(

σ2
t pt

)
.

Proof. Write Φ(x, t ) = Φt (x) for an arbitrary test function in C 2,1(Rd × [0,T ],R). Then from Theo-
rem 6.17,

dΦt (X t ) = ∂tΦt (X t )dt +
d∑

k=1
∂xkΦt (X t )dX t + 1

2

d∑
k,ℓ=1

∂2
xk ,xℓΦt (X t )d〈X (k), X (ℓ)〉t

= ∂tΦt (X t )dt +〈∇Φt (X t ),dX t 〉+σ2
t∆Φt (X t )dt ,

where we used that d〈B (k),B (ℓ)〉t = δk,ℓdt by independence of the components of the Brownian mo-
tion. This expression simplifies to

dΦt (X t ) = (
∂tΦt (X t )+〈∇Φt (X t ), at 〉+σ2

t∆Φt (X t )
)
dt +p

2σt 〈∇Φt (X t ),dBt 〉.
From the centering property of Proposition 6.8, we get that E

[p
2σt 〈∇Φt (X t ),dBt 〉

] = 0. Now writing
the above expression in integral form and taking its expectation with respect to X t ∼ pt (x)dx, we get

E
[
Φt (X t )−Φ0(X0)

]= ∫ t

0
E
[
∂tΦs (Xs )+〈∇Φs (Xs ), as〉+σ2

s∆Φs (Xs )
]

ds

For the term involving the time derivative, apply Fubini and integration by parts in time to get∫ t

0
E [∂tΦs (Xs )]ds =

∫
Rd

∫ t

0
∂tΦs (x)ps (x)dsdx

=
∫
Rd

((
Φt (x)pt (x)−Φ0(x)p0(x)

)−∫ t

0
Φs (x)∂t ps (x)ds

)
dx

= E[Φt (X t )−Φ0(X0)
]−∫ t

0

∫
Rd
Φs (x)∂t ps (x)dxds

For the gradient and Laplacian terms, use integration by parts in space to get∫ t

0
E
[〈∇Φs (Xs ), as〉+σ2

s∆Φs (Xs )
]

ds =
∫ t

0

∫
Rd

(〈∇Φs (x), as (x)〉+σ2
s (x)∆Φs (x)

)
ps (x)dxds

=
∫ t

0

∫
Rd

(−∇· (ps (x)as (x))+∆(ps (x)σ2
s (x))

)
Φs (x)dxds.
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All in all, we have shown that for all smooth enough compactly supportedΦ,

0 =
∫ t

0

∫
Rd

(−∂t ps (x)−∇· (ps (x)as (x))+∆(ps (x)σ2
s (x))

)
Φs (x)dxds,

which yields the result by duality.

Diffusion processes and ODEs

The Fokker–Planck equation can be seen as describing the evolution of the probability density pt (x)
of the position of the particle X t under the influence of a drift force at (X t )dt and random forcesp

2σt dBt . As such, it is linked with transport of the mass p0 through time.

Proposition 6.24. Ifσt only depends on time, the Fokker-Planck equation for dX t = at (X t )dt+p2σt dBt

can be recast as the non-linear transport equation

∂t pt (x) =∇· (vt (x)pt (x)
)

with velocity field vt (x) :=−at +σ2
t ∇ log pt (x).

Proof. Since ∇ log p = ∇p/p and that ∆
(
σ2

t pt (x)
) = σ2

t∆pt (x) by space homogeneity of σt , a solution
of Fokker-Planck satisfies

∂t pt (x) =−∇· (at (x)pt (x)
)+∆(

σ2
t pt (x)

)
=∇· (−at (x)pt (x)+σ2

t ∇pt (x)
)

=∇· (−at (x)pt (x)+σ2
t
∇pt (x)

pt (x)
pt (x)

)
=∇· ((−at (x)+σ2

t ∇ log pt (x)
)
pt (x)

)
.

The above transport equation can be seen as the evolution of marginals of a deterministic ODE
with a random initialization, as the following result shows.

Proposition 6.25. If X0 ∼ p0(x)dx and that we consider the solution trajectories of the ordinary differ-
ential equation {

dxt =−vt (xt )dt ,

x0 = X0,

then for all t ≥ 0, xt ∼ pt (x)dx where pt is given by the Fokker-Planck equation of Proposition 6.23.

Proof. Writing xt ∼ qt (x)dx, then for all test functionΦ,∫
Rd
Φ(x)∂t qt (x)dx = ∂t E [Φ(xt )]

= E [∂tΦ(xt )]

= E[〈∇Φ(xt ), x ′
t 〉

]
=−

∫
Rd

〈∇Φ(x), vt (x)〉qt (x)dx

=
∫
Rd
Φ(x)∇· (vt (x)qt (x)

)
dx,

and hence qt satisfies Fokker-Planck. Since q0 = p0, we get the result provided that Fokker-Planck has
a unique solution.



CHAPTER 6. DIFFUSION-BASED GENERATIVE MODELS 86

March 13, 2023 1

Ω(t) vs time

Ω0

Ω1

ODE

Ω(t) vs time

Ω0

Ω1

SDE

Figure 6.5: Taken from [ABVE23]. Two stochastic processes having the same marginal distributions.
The left one solves an ODE (Proposition 6.25) and has smooth trajectories with randomness arising
only from its initial condition x0 ∼ p0(x)dx. The right one solves an SDE (Proposition 6.23) and has
diffusive trajectories.

This result highlights the fact that given a family of distributions (pt )0≤t≤T , there are lots of dif-
ferent ways to sample a process with marginals (pt )0≤t≤T . See Figure 6.5 for simulated examples. At
this point, we have constructed two very different continuous random processes, but with identical
marginal probability densities pt :

• (X t )t is nowhere differentiable. It satisfies a stochastic differential equation (Proposition 6.23).

• (xt )t is smooth. It satisfies an ordinary differential equation (Proposition 6.25).

In fact, both points of view shall provide generative strategies, and can be cast in a unified framework
called stochastic interpolants [ABVE23]. Overall, the key ingredients for a diffusion-like generative
model to be operable are

• (Interpolation) The family of distributions (pt )t connects p0 = pdata and pT ≃N (0,1);

• (Samplability) The marginals pt are easy to sample starting from X0 ∼ pdata;

• (Reversibility) One can learn a way to reverse the time dynamic of (pt )t .

It is now this third point that we will examine in the following section.

6.2.3 Backward process

We have seen that the Ornstein-Ulhenbeck process provides an easy way to generate random vari-
ables XT ∼ pT (x)dx ≃N (0,σ2/λ) from a seed random variable X0 ∼ pdata and the resolution of a SDE
(numerically with a Euler scheme). We now want to reverse time, and try to build a backward process

(
←−
X t )t≤T ∼ (XT−t )t≤T .

As above, let us consider the Itô process dX t = at (X t )dt +p
2σt dBt withσt homogeneous in space. Its

associated Fokker-Planck equation writes

0 =−∂t pt −∇· (at pt
)+σ2

t∆pt .
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In distribution, reversing the dynamic amounts to consider t 7→ pT−t instead of t 7→ pt , which reverses
the sign of the time derivative and leaves the spatial ones unchanged. Therefore,

0 =+∂t pT−t −∇· (aT−t pT−t
)+σ2

T−t∆pT−t .

One can reinterpret this equation as another instance of Fokker-Planck by writing it as

0 =−∂t pT−t +∇· (aT−t pT−t
)−σ2

T−t∆pT−t

⇐⇒ 0 =−∂t pT−t +
(∇· (aT−t pT−t

)−2σ2
T−t∆pT−t

)+σ2
T−t∆pT−t .

In the middle term, we use the fact that ∆p = ∇ · (∇p) = ∇ · (p∇ log p) to get the formally equivalent
equation

0 =−∂t pT−t −∇· (←−a T−t pT−t
)+σ2

T−t∆pT−t ,

where ←−a t (x) :=−at (x)+2σ2
t ∇ log pt (x). At the end of the day, we recognize this Fokker-Planck equa-

tion as characterizing the following backward stochastic dynamic.

Theorem 6.26 (Backward stochastic dynamic). If σt only depends on time and that the solution to
dX t = at (X t )dt +p

2σt dBt has density X t ∼ pt (x)dx, then the solution to{
d
←−
X t =

(−aT−t (
←−
X t )+2σ2

T−t∇ log pT−t (
←−
X t )

)
dt +p

2σT−t dBt←−
X 0 ∼ pT (x)dx

satisfies

(
←−
X t )t≤T ∼ (XT−t )t≤T .

This result explicitly displays the requirements to simulate the backward process:

• Sample
←−
X 0 from pT , (supposedly easy for large T if we chose the diffusion well)

• Run a SDE solver with

– diffusion coefficient σT−t , which we chose;

– drift −aT−t (x)+2σ2
T−t∇ log pT−t (x), which unfortunately depends on the unknown distribu-

tion pT−t !

Even though the drift is unknown because it depends on the score ∇ log pT−t . However, we can try and
estimate it along the way to make everything work.

6.3 Score-based generative models

Let us present a couple ways to estimate the score function (x, t ) 7→ ∇ log pt (x). Score matching is the
standard terminology to refer to this part. The loss used to do so is also very standard, as most works
consider the so-called Fisher divergence given by

Fisher(p | p̂) :=
∫
Rd

∥∇ log p(x)−∇ log p̂(x)∥2p(x)dx

= EX∼p [∥∇ log p(X )−∇ log p̂(X )∥2],

and for which the L2 structure allows for drastic simplifications when optimizing over s(x) :=∇ log p̂(x),
see below. Indeed, at this point, Fisher(p | p̂) cannot be trivially estimated from sample because of the
dependence in ∇ log p in the expectation.
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6.3.1 Vanilla score matching

The main trick for score matching dates back to [HD05]. It is based on the following simple result.

Proposition 6.27 (Vanilla score trick). For all smooth density p : Rd → R+, there exists c = cp ≥ 0 such
that the following holds. For all smooth s :Rd →Rd decaying sufficiently fast at infinity,

EX∼p
[∥∇ log p(X )− s(X )∥2]= c +EX∼p

[
2∇· s(X )+∥s(X )∥2] .

Proof. We simply develop the left-hand side to get

EX∼p
[∥∇ log p(X )− s(X )∥2]
= EX∼p

[∥∇ log p(X )∥2]−EX∼p
[
2〈∇ log p(X ), s(X )〉]+EX∼p

[∥s(X )∥2]
The first term does not depend on s and the last one is just as desired. The middle one can be inte-
grated by parts through

−2
∫
Rd

〈∇ log p(x), s(x)〉p(x)dx =−2
∫
Rd

〈∇p(x), s(x)〉dx

= 2
∫
Rd

p(x)∇· s(x)dx,

which yields the result.

From there, one can fit a parametric set of functions (sθ)θ∈Θ (typically neural networks) to learn
the score ∇ log pt (x) via the empirical risk minimization

θt ∈ argmin
θ

EX t∼pt

[
2∇· sθ(X t )+∥sθ(X t )∥2] . (6.1)

Note that an empirical version of the above expectation is indeed available to us, from simulations of
the forward process.

Remark 6.28 (But... In practice?). • Equation (6.1) needs to be solved globally for t ∈ [0,T ]. We could
discretize 0 = t0 < . . . < tp = T and fit p scores sθt0

, . . . , sθtp
in parallel. However, it appears that learn-

ing the whole function (x, t ) 7→ ∇ log pt (x) globally in space and time is more efficient. This fact follows
the intuition, since closeby t j should result in closeby sθt j

. Therefore, practitioners tend fit one single

space-time neural net with the time-integrated loss

θ ∈ argmin
θ

∫ T

0
w(t )EX t∼pt

[
2∇· sθ(X t , t )+∥sθ(X t , t )∥2]dt ,

with w being a weight function chosen by the user (typically decreasing).

• Overall, the loss function to minimize has the form

ℓ(θ) :=
p∑

j=0
w(t j )

n∑
i=1

(
2∇· sθ(X t j ,i , t j )+∥sθ(X t j ,i , t j )∥2

)
, (6.2)

where the (X t0,i )i≤n , . . . , (X tp ,i )i≤n are obtained by SDE simulations starting from data X1, . . . , Xn ∼ p0.
Even with these simulated sample taken as granted, note that performing gradient descent on (6.2)
requires to evaluate second order gradients ∇θ∇x sθ(x), which is very costly.
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6.3.2 Denoising score matching

One way to avoid the general numerical limitations described in Remark 6.28 is to take advantage of
the convolutional structure of the noising process [Vin11]. Writing p ∗ g (x) := ∫

Rd p(y)g (x − y)dy for
the convolution of densities p, g :Rd →R+, we can build upon the following result.

Proposition 6.29 (Denoising score trick). If X ∼ p(x)dx and ε ∼ g (x)dx are independent, then Xε :=
X +ε∼ (p ∗ g )(x)dx. Furthermore, there exists c ′ = c ′p,g such that for all smooth s :Rd →Rd ,

EXε∼p∗g
[∥∇ log(p ∗ g )(Xε)− s(Xε)∥2]= c ′+E(X ,ε)∼p⊗g

[∥∇ log g (ε)− s(Xε)∥2] .

Proof. By properties of the convolution, pg := p∗g is smooth whenever either p or g is smooth. From
Proposition 6.27 applied to Xε ∼ pg , we have

EXε∼pg

[∥∇ log pg (Xε)− s(Xε)∥2]= cp,g +EXε∼pg

[
2∇· s(Xε)+∥s(Xε)∥2.

]
Furthermore, because pg (x) = ∫

Rd p(y)g (x − y)dy , we have ∇pg (x) = ∫
Rd p(y)∇g (x − y)dy . Hence, an

integration by parts in the second term of the last display yields

2
∫
Rd

∇· s(x)pg (x)dx =−2
∫
Rd

〈∇pg (x), s(x)〉dx

=−2
∫
Rd

∫
Rd

〈p(y)∇g (x − y), s(x)〉dydx

=−2
∫
Rd

∫
Rd

〈∇ log g (x − y), s(x)〉g (x − y)p(y)dydx

= E(X ,ε)∼p⊗g
[−2〈∇ log g (ε), s(Xε)〉] .

The proof is then complete by recognizing the difference of squares

E
[−2〈∇ log g (ε), s(Xε)〉+∥s(Xε)∥2]= E[∥∇ log g (ε)− s(Xε)∥2]−E[∥∇ log g (ε)∥2] ,

with E
[∥∇ log g (ε)∥2

]
depending only on g .

As expected, the expression given by Proposition 6.29 does not involve any derivative of the can-
didate score s, and the derivative is undertaken by the score ∇ log g of the chosen noise.

To see this in action, apply Proposition 6.29 to the density p = pt associated to the Ornstein-
Ulhenbeck process X t ∼ e−λt X0 + εt . Here, the noise added at time t is the Gaussian εt ∼ N (0,Σt )

with Σt := σ2

λ (1−e−2λt ). This yields

g t (x) = (2πΣ2
t )−d/2 exp

(−∥x∥2/(2Σ2
t )

)
and hence ∇ log g t (x) =−x/Σ2

t . The time-integrated loss minimization becomes equivalent to

argmin
θ

∫ T

0
w(t )E

[∥∇ log g t (εt )− sθ(X t , t )∥2]dt

=argmin
θ

∫ T

0
w(t )E

[
∥∇ log g t (εt )− sθ(e−λt X0 +εt , t )∥2

]
dt

=argmin
θ

∫ T

0
w(t )E

[∥∥∥∥∥− εt

Σ2
t

− sθ(e−λt X0 +εt , t )

∥∥∥∥∥
2]

dt .

More concisely, if we write ξ∼N (0, Id×d ), this leads to

argmin
θ

∫ T

0

w(t )

Σ2
t

E

[∥∥∥−ξ−Σt sθ(e−λt X0 +Σtξ, t )
∥∥∥2

]
dt ,

which explains why we sometimes say that sθ “learns the noise" ξ. Indeed, the rescaled fitted score
Σt sθ is meant to learn the (opposite of) noise ξ from observation X t .
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